The Phenomic and Environmental Sensor Array

Based at our ANU research forest in the National Arboretum Canberra, the Phenomic and Environmental Sensor Array collects and integrates data from micrometeorological towers, a distributed wireless environmental sensor network, and overlapping multi-billion pixel time-lapse cameras that cover the research site at 1 cm resolution. The Array provides extremely detailed information from individual trees to the entire forest, every minute and hour. It captures how weather and climate affect growth as the individual trees mature into a closed forest. It will allow us to predict drought effects on growth and development for different eucalyptus species and genotypes, with implications for regenerating forest ecosystems under climate change, nationally and globally. [view latest measurements and images]



Australia’s Environment: routine, comprehensive national reporting

National-scale, comprehensive information on the condition, change and trajectory of our environment is essential for successful environmental management. At national scale, the State of Environment report is produced once every five years, with measurements that are often already some years old. There is an urgent need for a continuous and up-to-date environmental monitoring system that can provide the basis for regular state-of-environment and environmental accounts.

Since 2015, we have been developing a data processing system that integrates and summarises spatial data to produce an annual report. The system provides continuity and regularity in environmental condition data. A backbone to the system is our OzWALD technology, a model-data fusion system that integrates satellite remote sensing into spatial computer models to estimate important components of the water and carbon cycles.

In collaboration with the Terrestrial Ecosystem Research Network, Integrated Marine Observing System, Geoscience Australia, CSIRO and the Australian Bureau of Statistics, we have developed ‘’Australia’s Environment”, an annual briefing on the state of our environment. We provide the information at different formats and levels of detail to make them as relevant, accessible and easily interpreted as possible.

The information can be accessed in digest through the annual Fact Sheet, Briefing Material, and summary article.

For those wishing to use the data in accounting or reporting, we provide Australia’s Environment Explorer, a web atlas that allows you to visualise and investigate environmental changes by region, location or land cover type.

 


       



Vegetation structure from laser scanning

Detailed knowledge of the structure of overstorey and understorey vegetation around us has many applications, from nature conservation to forest management and fire risk reduction. Current measurement methods are slow and labour intensive.
Together with CSIRO and the Terrestrial Ecosystem Research Network, we have been developing automated technologies to map vegetation structure from LiDAR – laser scanning data derived from handheld scanners or airborne measurements.
These data have a wide range of applications. They help ecologists understand habitat quality and its suitability for different species. They also help fire managers to assess fire risk and plan hazard reduction burns. The data can also be used to measure biomass and carbon storage in forests.



Cosmic rays for fire and flood risk monitoring

The cosmic ray soil moisture probe is a recently invented technology that is set to revolutionise our ability to monitor soil and biomass moisture content.
With support from CSIRO and the Actew/ActewAGL Endowment Fund, we are investigating the potential of this technology for flood and fire risk monitoring in a remote part of the Cotter catchment in Namadgi National Park.
[View latest measurements here or here]