

2014 AIRBORNE CAMPAIGN AT THE ACT

Dr. Marta Yebra

Research Fellow Fenner School of Environment & Society ANU College of Medicine, Biology and Environment

THANK YOU!

Suzanne, Phil, Kathyn, Browyn, Carly, Luke, Cleo, Brydie, Yiging, Geoff, Adrian, Michelle, Arantxa, Jim, Eva, Lars, Ludo, Kara, Mick, Tom, Juan Pablo.

ACT Covernment

OBJECTIVE OF THE CAMPAING

Enable delivery of novel outcomes to help build a next-generation disaster monitoring systems.

- a) Provide spatially explicit basis for monitoring on fuel dynamics (fuel moisture content (FMC), biomass and fuel structure)
- b) Demonstration products to be ready for the next generation of hyperspectral sensors such as Hyspiri (2016) as well as next space-borne LiDAR (GEDI-2018), which will extend to the operational and wider-coverage capabilities of the methods developed in this project

AIRBORNE LIDAR DATA COLLECTION

10-12-2013 (Furgo)

- LiDAR 2 pulses /m²
- LiDAR (5 pulses/m² + hyperspectral data)

LiDAR point cloud for Black Mountain Nature Reserve. Source: Marselis, 2013.

HYPERSPECTRAL DATA COLLECTION

- 1) First flight (MF-Lake Burley Griffin): 25-02-2014 (Hyvista-Hymap)
- 2) Second flight: 10-03-2014 (Hyvista-Hymap)

- LiDAR 2 pulses /m²
- LiDAR (5 pulses/m² + hyperspectral data)

128 bands across the reflective solar wavelength region of 0.45 – 2.5 um

GROUND TROTHING-FIELD PLOTS

Legend

- Field Plots
- Zebedee&DWEL
- Individual Trees

GROUND TRUTHING

- Fuel structure of different layers:
 - Overstorey: height, base height, crown dimensions, DBH, distance and bearing, bark type, specie.
 - Intermediate, Elevated, Near surface and Surface: Separation, width, height, base high, dominant specie
- Fuel hazard assessment following Gould et al (2007b) and Hines et al (2010)

Figure from Gould et al 2011

GROUND TRUTHING

 Fuel moisture content for all the different layers: canopy, elevated, near surface, surface

GROUND BASED LIDAR

- Provides **high resolution**, **reliable understory information** useful to validate and/or complement airborne data
- Taken in 9 plots at BM and 3 plots in MF
- Zebedee (CSIRO)

Ground based Zebedee-LiDAR data collected at Black Mountain reserve (ACT)

DWEL (CSIRO-Boston uni)

Photos courtesy of Michael Schaefer

FMC RETRIEVAL FROM SIMULATION MODELS

Jurdao at al 2013

HYMAP FOR FUEL MOISTURE CONTENT ESTIMATION

RMSE=27% All plots / 23% No burnt plots

HYMAP FOR FUEL MOISTURE CONTENT ESTIMATION

THANK YOU

FIRE BEHAVIOUR MODELLING EXERCISE

